135 research outputs found

    Matching productivity to resource availability in a small predator, the stoat (Mustela erminea)

    Get PDF
    Stoats (Mustela erminea), introduced to New Zealand in the late nineteenth century, are common in New Zealand beech (Nothofagus sp.) forests, where populations of feral house mice (Mus musculus) fluctuate between years much as voles do in the northern hemisphere. We present new field evidence and two models demonstrating (i) a strong correlation between density indices for young stoats in summer and for mice in the previous spring, and (ii) a significant linear relationship between productivity per female and spring density of mice up to 25 mice captures per 100 trap-nights. These models confirm that short-lived small mustelid predators dependent on fluctuating populations of prey have evolved means of matching their productivity to the prospects of success across a wide range, from total failure in rodent crash years to >12 independent young per female in rodent peak years. We suggest that the enhanced reproductive success of female stoats when rodents are abundant is due to a combination of critical improvements in both the reproductive physiology and the foraging behaviour of female stoats in rodent peak years. Conversely, a drastic shortage of rodents increases the mortality of embryos and nestlings, while the adult females are able to survive, and even remain relatively fat, on other foods

    A simulated study of implicit feedback models

    Get PDF
    In this paper we report on a study of implicit feedback models for unobtrusively tracking the information needs of searchers. Such models use relevance information gathered from searcher interaction and can be a potential substitute for explicit relevance feedback. We introduce a variety of implicit feedback models designed to enhance an Information Retrieval (IR) system's representation of searchers' information needs. To benchmark their performance we use a simulation-centric evaluation methodology that measures how well each model learns relevance and improves search effectiveness. The results show that a heuristic-based binary voting model and one based on Jeffrey's rule of conditioning [5] outperform the other models under investigation

    Synthesis and structural characterization of Zn2+, Cd2+ and Hg2+ complexes with tripyrrolidinophosphine chalcogenides

    Get PDF
    Authors are grateful to the Tunisian Ministry of High Education and Scientific Research for support [grant number: LR99ES14] and to the French Service for Cooperation and Cultural Action (SCAC) in Nouakchott, Mauritania for a scholarship to KE.Six new complexes of zinc(II), cadmium(II) and mercury(II) chlorides with tripyrrolidinophosphine chalcogenides of the types [MCl2(Pyrr3PE)2] (M = Zn, E = S (1) or E = Se (2); M = Cd, E = S (3) or E = Se (4)) and [{HgCl(Pyrr3PE)}2(µ-Cl)2] (E = S (5) or Se (6)) have been prepared in yields of 66-92% by reaction of the ligands with metal chloride in ethanol and characterized by 1H and 31P NMR, IR, elemental analysis, conductivity, and single crystal X-ray diffraction analysis. The results show that the complexes are pseudo-tetrahedral containing coordinated chloride ions. Interestingly, the X-ray studies reveal that while the title ligands produce dinuclear complexes with Hg, their Cd and Zn complexes are mononuclear. The tetrahedral bond angles vary from 85.69(5)° to 126.25(4)° in dinuclear complexes 5 and 6 and from 93.51(3)° to 117.38(3)° in mononuclear species 2-4. The E = S bond lengths are in the range 1.999(9)-2.198(2) Å. The coordination properties of the title ligands are discussed and compared to those obtained for their bulkier counterparts.PostprintPeer reviewe

    Three-Dimensional Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimization

    Full text link

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Lignin deconstruction by anaerobic fungi

    Get PDF
    Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: A pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk ofmajor cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regressionmodels to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0×10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genom

    Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    Get PDF
    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress
    corecore